Definitions:

- Genetics
- Genomics
- Epigenetics/epigenomics
- Genomic HEALTH
Concepts of Health & Disease

WHO definition of Health

Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity.

Preamble to the Constitution of the World Health Organization as adopted by the International Health Conference, New York, 19-22 June, 1946 and entered into force on 7 April 1948. The Definition has not been amended since 1948.
Personalized Health Care: Opportunities, Pathways, Resources

genomics • health information technology • evidence/clinical delivery

Secretary Michael Levitt
United States
Department of Health and Human Services
September 2007

Right treatment for the right person at the right time.
Growth Hormone Receptor Deficiency Is Associated with a Major Reduction in Pro-Aging Signaling, Cancer, and Diabetes in Humans
Jaime Guevara-Aguirre, et al.
Sci Transl Med 16 February 2011
We monitored for 22 years Ecuadorian individuals who carry mutations in the growth hormone receptor (GHR) gene that lead to severe GHR and IGF-1 (insulin-like growth factor–1) deficiencies.... The individuals with GHR deficiency exhibited only one nonlethal malignancy and no cases of diabetes.
GH Receptor Deficiency in Ecuadorian Adults Is Associated With Obesity and Enhanced Insulin Sensitivity

Jaime Guevara-Aguirre, Arlan L. Rosenbloom, Priya Balasubramanian, Enrique Teran, Marco Guevara-Aguirre, Carolina Guevara, Patricio Procel, Irene Alfaras, Rafael De Cabo, Stefano Di Biase, Luis Narvaez, Jannette Saavedra, and Valter D. Longo
In summary, subjects with GHRD do not develop diabetes because they lack the counter-regulatory effect of GH.

This critical role for GH action in the induction of insulin resistance is an important consideration in the frequent administration of pharmacological doses of recombinant human GH (rhGH) for growth promotion in children who do not have GH deficiency. A large postmarketing surveillance study noted a 6-fold increase in the development of T2D with rhGH therapy, which did not resolve when rhGH treatment was stopped.
Good Genomic Medicine?

- Should we treat children of idiopathic short stature?
- “Until there are more strong studies on the psychological benefits of receiving growth hormone and the long-term safety of treatment (including years after discontinuing treatment), parents will need to make the decision without the benefit of reliable research.”

(http://labblog.uofmhealth.org/rounds/should-growth-hormone-be-used-for-short-stature-kids)
Delineating Genomic Good Health

• What is healthy and who decides?!
• Deafness – disease or different culture?
• Down Syndrome and RNA therapy?
• Redheads (MC1R mutants)!!
Ethical Issues

• What is the goal:
 • better health (how defined?!),
 • more knowledge (for whom?),
 • more options (who has access)?
• How to achieve patients’ goals?
• How to achieve societal goals?
• How to determine risk/benefit ratios?!
What are genome editing and CRISPR-Cas9?

Genome editing (also called gene editing) is a group of technologies that give scientists the ability to change an organism's DNA. These technologies allow genetic material to be added, removed, or altered at particular locations in the genome. Several approaches to genome editing have been developed. A recent one is known as CRISPR-Cas9, which is short for clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9. The CRISPR-Cas9 system has generated a lot of excitement in the scientific community because it is faster, cheaper, more accurate, and more efficient than other existing genome editing methods.

CRISPR slices virus genes out of pigs, but will it make organ transplants to humans safer?

By Kelly Servick Aug. 10, 2017

A prudent path forward for genomic engineering and germline gene modification

By David Baltimore, Paul Berg, Michael Botchan, Dana Carroll, R. Alta Charo, George Church, Jacob E. Corn, George Q. Daley, Jennifer A. Doudna, Marsha Fenner, Henry T. Greely, Martin Jinek, G. Steven Martin, Edward Penhoet, Jennifer Puck, Samuel H. Sternberg, Jonathan S. Weissman, Keith R. Yamamoto

A framework for open discourse on the use of CRISPR-Cas9 technology to manipulate the human genome is urgently needed

CONCLUSIONS. At the dawn of the recombinant DNA era, the most important lesson learned was that public trust in science ultimately begins with and requires ongoing transparency and open discussion. That lesson is amplified today with the emergence of CRISPR-Cas9 technology and the imminent prospects for genome engineering. Initiating these fascinating and challenging discussions now will optimize the decisions society will make at the advent of a new era in biology and genetics.

Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous *MYBPC3* mutation in human preimplantation embryos with precise CRISPR–Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response.
Many challenges, limited resources

• How do we decide which resources go where and for whom?
• Who decides?
• Preventive medicine vs genomic medicine?
• Should we base our decisions on number and need?
• Sanitation reduces the spread of diarrheal diseases that kill 4,000 children a day
• Sanitation yields huge economic benefits due to increased productivity and savings on healthcare costs
• Sanitation improves the educational prospects of poor people and increases girls' attendance at school, due to improved health and privacy
• Sanitation reduces the burden on failing health systems
• Sanitation is vital for dignity
• Sanitation prevents environmental pollution
“But that is apples and oranges!”

• It’s all fruit! Need to address big picture including all our goals and efforts.
• When pursuing biomedical advances, what lessons to be learned from GMOs, human embryo research, Jesse Gelsinger, etc?
• How do you want genome editing to go forward? There will be errors and tragedies, so how best to prepare for that? Build trust!
How Academic Health Systems Can Achieve Population Health in Vulnerable Populations Through Value-Based Care: The Critical Importance of Establishing Trusted Agency
THE “PUBLIC MISTRUST CRISIS” AND HOW TO ADDRESS IT: ENGAGEMENT, INCLUSIVITY, AND ETHICS

Recommendations for improved public engagement in discussions on emerging biotechnology: Article three in the series on emerging biotechnology.

BY SAM WU, BS and KEVIN T. FITZGERALD, SJ, PhD

The next step forward would be to increase our understanding of the complex network of factors that precipitate controversy and public mistrust in particular contexts – in this case, in discussions regarding emerging biotechnologies. Such insight may, in turn, inform the selection and design of public engagement strategies that aim to address disagreements specific to that particular scientific debate. Notably, not all public engagement events should seek to achieve the same goals or to address the same issues.
Kevin Esvelt at MIT using public engagement to guide CRISPR research and application.

Nearly 40 percent of Nantucket’s population has been impacted by tick-borne disease. A project directed by appointees of the Board of Health aims to lastingly immunize the island’s white-footed mice, which are responsible for infecting most ticks, in order to prevent Nantucket’s citizens from becoming infected by Lyme and other tick-borne diseases.

On **Thursday, August 17 at 6pm** in the Public Safety Building, Professor Kevin Esvelt of the MIT Media Lab will describe the project and open the floor to questions. Nantucket residents are invited to join and contribute their thoughts, questions, and concerns to the discussion!

https://www.media.mit.edu/events/nantucket/
Need trust to address surprises!

- Surprising new data/technologies
- Surprising different perspectives
- Surprising outcomes—good and bad
- Surprising evolution of thinking
- Surprising failures and synergies
- What will come from today?!
Goals of Genome Editing

• Discussion of the goods/goals of genome editing requires input from all groups, especially the most vulnerable.

• Technological progress will be slowed, but its use will be more effective and humane. Which goal do we want—better technology or better/healthier societies and world?