Front-line Therapy of DIPG Using the IDO Pathway Inhibitor Indoximod in Combination With Radiation and Chemotherapy

Theodore S. Johnson, M.D., Ph.D.
Pediatric Immunotherapy Program
Children’s Hospital of Georgia
Medical College of Georgia (MCG)
Georgia Cancer Center
Augusta University

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Disclosures

• Theodore S. Johnson, M.D., Ph.D.
 • NewLink Genetics Corporation is partially funding a pediatric clinical trial, which will be discussed
 • The presenter receives no direct financial support from NewLink Genetics Corporation
 • No other relevant financial relationships exist with respect to this presentation
 • Off-label use of chemotherapy drugs will be discussed for pediatric patients
IDO Pathway and Cancer: Key Immuno-oncology Target

•IDO (indoleamine 2,3-dioxygenase): intracellular enzyme that regulates immune response by degrading tryptophan to kynurenine

•IDO pathway activity results in a shift of the ratio of tryptophan (↓) to kynurenine (↑)

•This shift in ratio signals a suppressive phenotype rather than an activated antitumor phenotype

•Tumors hijack the IDO pathway, a normal part of the immune system, to facilitate immune escape

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
IDO Pathway and Cancer: Key Immuno-oncology Target (cont)

Key points:

• IDO is a natural mechanism of immunosuppression and tolerance in the immune system involved in
 • Acquired peripheral tolerance (pregnancy, mucosal tolerance)
 • Maintenance of tolerance to apoptotic cells (including apoptotic tumor cells)
• We hypothesize that the effect on tolerance to apoptotic cells may be critical for synergy with chemotherapy and radiation
IDO1 Expression in Various Tumor Types is Associated With Poor Patient Outcomes

- IDO1 is highly expressed in multiple tumor types
 - Melanoma
 - NSCLC
 - Ovarian cancer
 - Pancreatic cancer
 - Colorectal cancer
 - Glioblastoma
 - Squamous cell carcinoma
 - Endometrial carcinoma
 - DLBCL
 - RCC
 - TCC
 - TNBC
Indoximod Differentiated Mechanism of Action

- Orally administered, small-molecule IDO pathway inhibitor that reverses the immunosuppressive effects of low tryptophan and high kynurenine that result from IDO activity

- Immunostimulatory effects involving 3 main cell types: CD8+ T cells, T regulatory cells, and dendritic cells
 - Reverses effects of low tryptophan by increasing proliferation of effector T cells
 - Directly reprograms T regulatory cells to helper T cells
 - Downregulates IDO expression in dendritic cells

- Potential synergy has been shown with checkpoint blockade, chemotherapy, radiation and vaccines

IDO, indoleamine 2,3-dioxygenase; Treg, T regulatory cell; DC, dendritic cell.

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Indoximod vs Epacadostat Mechanism of Action

Indoximod Directly Reprograms T Regulatory Cells to Helper T cells

Indoximod has a differentiated mechanism within the IDO pathway

Indoximod

Epacadostat

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Designing Multimodal Chemo-radio-immunotherapy

• Hypothesis:
 • Immune activation (immunotherapy) can allow responsiveness to chemotherapy and radiation in patients who would otherwise be refractory

• However, this synergy with chemotherapy/radiation requires targeting the antigen-presenting step and creating a pro-inflammatory (immunogenic) tumor milieu
 • Essentially, it must break tolerance to the dying/apoptotic tumor cells
 • This antigen cross-presentation step lies upstream of the conventional T-cell checkpoints

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Recurrent/Refractory Pediatric Brain Tumors

- Recurrent/refractory brain tumors represent the greatest single cause of mortality in pediatric cancer
 - Cannot be cured by current standard treatments (treatment-refractory)
 - Standard of care is largely palliative

Historical control data for relapsed brain tumors

- PFS, progression-free survival; OS, overall survival; HGG, high grade glioma.

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
First-in-children Phase 1 Trial of Indoximod-based Multimodal Chemo-radio-immunotherapy

- Relapsed or refractory primary brain tumor patients

- Primary endpoints:
 - Regimen-limiting toxicities of indoximod + temozolomide
 - Objective response rate
 - Regimen-limiting toxicities of indoximod + radiation
 - Safety

- Key eligibility criteria
 - 3-21 years of age
 - Histologically proven initial diagnosis of primary malignant brain tumor, with no known curative treatment options
 - MRI confirmation of tumor progression

- Multimodal management is a key feature of the regimen

- Radiographic evidence of progression (escape lesions) can be managed with continued indoximod and:
 - Surgical resection (regain local control)
 - Targeted radiation (regain local control)
 - Crossover to 2nd-line chemotherapy (cyclophosphamide/etoposide)

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
First-in-children Phase 1 Trial of Indoximod-based Multimodal Chemo-radio-immunotherapy (cont)

Group 1
- Indoximod dose escalation (study dose, PO, twice daily on days 1-28)
- Temozolomide (200 mg/m²/day, PO, once daily on days 1-5 of 28-day cycles)

Group 2 (expansion cohort of Group 1)
- RP2D of indoximod
- Temozolomide (200 mg/m²/day, PO, once daily on days 1-5 of 28-day cycles)

Group 3
- Indoximod dose escalation (study dose, PO, twice daily on days 1-28)
- Individualized radiation plan
- Followed by indoximod combined with cyclic temozolomide

Group 4 (progressive disease on indoximod + temozolomide)
- Indoximod (32 mg/kg/dose PO, twice daily on days 1-28)
- Cyclophosphamide (2.5 mg/kg/dose PO, once daily)
- Etoposide (50 mg/m²/dose PO, once daily)

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Patient Demographics (Mixed Population)

<table>
<thead>
<tr>
<th>Total patients enrolled</th>
<th>N = 29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis, n (%)</td>
<td></td>
</tr>
<tr>
<td>Ependymoma</td>
<td>14 (48)</td>
</tr>
<tr>
<td>Malignant glioma*</td>
<td>9 (31)</td>
</tr>
<tr>
<td>Medulloblastoma**</td>
<td>6 (21)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>10 (34)</td>
</tr>
<tr>
<td>Male</td>
<td>19 (66)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>African American</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>23 (79)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Declined to provide</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>12.5</td>
</tr>
<tr>
<td>Range</td>
<td>3–20</td>
</tr>
</tbody>
</table>

*Includes one each gliosarcoma, bithalamic glioma, and ganglioglioma.

**Includes one previously classified as primitive neuroectodermal tumor.
Patient 001: Example of Multimodal Management Chemo-radio-immunotherapy

- **Low-dose outpatient chemo**
 - 7-year-old with ependymoma: prolonged disease responsiveness
 - Indoximod-based multimodal regimen is well tolerated

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Patient 001: Continued Responsiveness Using Indoximod-based Multimodal Management

indoximod + radiation tumor (20 Gy)

NOT TARGETED WITH NEW RADIATION

indoximod + 3rd-line chemo

indoximod + 3rd-line chemo

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Radio-immunotherapy Improves Time to Regimen Failure (TTRF)

Median TTRF without RT = 3.2 mos
with any RT = 12 mos

% Still on regimen

Time on regimen (months)

Published studies

(+) RT (n=17) [p=0.04]

(-) RT (n=12)
New Metastatic Tumor Arising While on Therapy that Later Regresses

14 yo with CSF relapse of medulloblastoma

Begin indoximod + temozolomide

Pretreatment 2 cycles 4 cycles

Potential for late responses makes TTRF an important outcome metric

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Indoximod-based Multimodal Regimen Is Well Tolerated

• In the 29 patients included in the study, SAEs possibly related to indoximod included 1 case each of:
 • Febrile neutropenia
 • Hemiparesis
 • Hydrocephalus
 • Spinal cord compression
 • Status epilepticus
 • Urinary tract infection

• Overall, indoximod did not worsen the toxicity of the base treatment
Pilot Cohort in Diffuse Intrinsic Pontine Glioma (DIPG)

Group 1
- Indoximod dose escalation (study dose, PO, twice daily on days 1-28)
- Temozolomide (200 mg/m²/day, PO, once daily on days 1-5 of 28-day cycles)

Group 2 (expansion cohort of Group 1)
- RP2D of indoximod
- Temozolomide (200 mg/m²/day, PO, once daily on days 1-5 of 28-day cycles)

Group 3
- Indoximod dose escalation (study dose, PO, twice daily on days 1-28)
- Individualized radiation plan
- Followed by indoximod combined with cyclic temozolomide

Group 4 (progressive disease on indoximod + temozolomide)
- Indoximod (32 mg/kg/dose PO, twice daily on days 1-28)
- Cyclophosphamide (2.5 mg/kg/dose PO, once daily)
- Etoposide (50 mg/m²/dose PO, once daily)

Pilot cohort
- Patients with radiographic diagnosis or histologically proven DIPG

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
DIPG Is Rapidly Fatal

• DIPG has the worst prognosis of any pediatric cancer
• Median time to progression after radiation is ~6 months\(^1\)
• At progression, patients follow a rapidly declining course
 • Median OS is 10-12 months\(^2\)
 • Uniformly fatal

Effective Treatments for DIPG are Lacking

- Standard-of-care treatment is palliative radiation (usually 54 Gy)
- Chemotherapy has no proven benefit
- Thus far, trials have not shown clinical benefit from currently available chemotherapy, radiosensitizing drugs, or biologics
- Due to their location in the brainstem, DIPGs cannot be surgically removed
Multimodal Chemo-radio-immunotherapy for DIPG Pilot Cohort

• First question: could DIPG patients tolerate the indoximod immunotherapy regimen?
 • DIPG patients are often highly symptomatic

• Pilot cohort of 6 newly diagnosed DIPG patients
 • All 6 patients have finished upfront radiation combined with indoximod
 • All 6 patients showed initial improvement in symptoms
 • 3/6 later developed inflammatory symptoms (eg, waxing/waning, migratory)
 • 2 of these occurred during first cycle of temozolomide with indoximod

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
NLG2105-037: 9.4-Year-Old Male With Newly Diagnosed DIPG

Baseline (pretreatment)

DIPG scans reviewed by Tina Young-Poussaint, M.D., Boston Children’s Hospital

Patient 037 classified as: “Significant response”

After 6 weeks of indoximod + radiation (54 Gy)

This patient is neurologically normal at 6 months

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
NLG2105-035: 9.3-Year-Old Male With Newly Diagnosed DIPG

Baseline (pretreatment)

This patient has sustained neurological improvement at 6 months

After 6 weeks of indoximod + radiation (54 Gy)

Serial sections on MRI (T2 Flair)

Baseline (pretreatment) Serial sections on MRI (T2 Flair) This patient has sustained neurological improvement at 6 months

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Baseline (pretreatment)

After 6 weeks of indoximod + radiation (54 Gy)

Additional Newly Diagnosed DIPG Patients

NLG2105-042 12 yo male

NLG2105-043 15 yo female

NLG2105-047 5 yo female

NLG2105-048 6 yo female

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.
Conclusions and Future Directions

- Phase 1 data suggest that indoximod-based immunotherapy can allow disease responsiveness to conventional therapy (radiation, chemotherapy)
- Pilot cohort is under way applying this approach to newly diagnosed DIPG patients
- Phase 2 trial is planned
Acknowledgements

Augusta University
- David H. Munn
- Ahmad Al-Basheer
- Diana Fridlyand
- Cole A. Giller
- Ian M. Heger
- Ravindra B. Kolhe
- William D. Martin
- Waleed F. Mourad
- Rafal Pacholczyk
- Rebecca Parker
- Eric K. Ring
- Amyn M. Rojiani
- Ramses F. Sadek
- Michiko Shimoda

Emory University
- Tobey J. MacDonald
- Dolly Aguilera
- R. Craig Castellino
- Bree R. Eaton
- Natia Esiashvili

Children’s Hospital Colorado
- Nicholas Foreman

Arnold Palmer Hospital for Children
- Amy Smith

Boston Children’s Hospital
- Tina Young Poussaint

NewLink Genetics Corp.
- Eugene P. Kennedy
- Charles J. Link
- Nicholas N. Vahanian
- Amy Bell
- Chris Smith
- Lucy Tenant

Pediatric Immunotherapy Program
- Eric Ring
- Robin Dobbins
- Beth Fisher
- Kimberly Gray

Grant Support
- Alex’s Lemonade Stand Foundation
- Cannonball Kids’ Cancer Foundation
- Hyundai Hope on Wheels Foundation
- Press On Foundation/CAM Fund

Formatting and editing assistance for this slide presentation was provided by Cello Health Communications and was funded by NewLink Genetics Corporation.

Presented at the American Association of Cancer Research (AACR) 2018 Annual Meeting, Chicago, IL, April 15, 2018.