Results of the NLG2105 phase 1 trial using the IDO pathway inhibitor indoximod, in combination with radiation and chemotherapy, for children with newly diagnosed DIPG

Theodore S. Johnson1,2, Dolly Aguileran, Ahmad Al-Basheern, Zuzana Berrogon, Robert C. Castellinon, Bree R. Eaton6, Natia Esiashvilin, Nicholas Foreman7, Ian M. Heger8, Eugene P. Kennedyn, Nicholas Vahanian9, William Martin3, Rafal Pacholczyk1, Eric Ring1,2, Ramses F. Sadekn,4, Michiko Shimodan, Amy Smith10, Chris Smith9, Tobey J. MacDonaldb, David H. Mumnc,1

1Georgia Cancer Center and Departments of 2Pediatrics, 3Radiation Oncology, and 4Population Health Sciences, Augusta University, Augusta, GA. 5Aflac Cancer & Blood Disorders Center at Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA. 6Department of Radiation Oncology and Winship Cancer Institute of Emory University, Atlanta, GA. 7Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO. 8Pediatric Neurosurgery Program, Medical City Children’s Hospital, Dallas, TX. 9NewLink Genetics Corporation, Ames, IA. 10Department of Pediatrics, Arnold Palmer Hospital for Children, Orlando, FL.

Background

• The indoleamine 2,3-dioxygenase (IDO) pathway is a natural mechanism of immune suppression that tumors exploit to evade immune responses

• Indoximod is an orally administered, small-molecule IDO pathway inhibitor that reverses the immunosuppressive effects of the IDO pathway

• We hypothesize that immune activation using indoximod immunotherapy can allow responsiveness to chemotherapy and radiation in patients who would otherwise be refractory

• Indoximod impacts CD8+ T cells, CD4+ T helper cells, Tregs, and dendritic cells
 - Reverses the effects of low tryptophan by increasing proliferation of effecter T cells
 - Drives differentiation into Th1 helper cells vs Tregs
 - Downregulates IDO expression in dendritic cells

Phase 1 Study Schema

• Indoximod, in combination with up-front radiation therapy, followed by maintenance indoximod plus chemotherapy for pediatric patients with newly-diagnosed treatment-naive DIPG

Safety Data for DIPG Patients Treated on NLG2105

Success Rate and Representative MRI Results for DIPG Patients with Good Responses

Conclusions

• We show data supporting the hypothesis that some DIPG patients may benefit from indoximod-based multi-modal immune-radio-chemotherapy

• Adding indoximod to radiation for DIPG patients has been well-tolerated to date

• Most patients have had initial improvements in symptoms

• Inflammatory MRI changes may complicate treatment of newly-diagnosed DIPG

Future Directions

• We have recently opened a phase 2 trial, which includes newly-diagnosed DIPG patients (NCT04049565)
 - This trial will enroll 30 DIPG patients

• Some patients could possibly benefit from continued indoximod-based therapy after progression, using an adaptive management algorithm that has shown promise in non-DIPG patients with relapsed brain cancer:

Acknowledgements

Funding was provided by:
 - Alex’s Lemonade Stand Foundation
 - Cannons Kids’ cancer foundation
 - EJ’s Block Party Foundation
 - broccoli’s Hope
 - Northern Nevada Children’s Cancer Foundation
 - Press on Foundation/CAM Fund
 - NewLink Genetics Corporation, as Sponsor of the trial

Historical data (n=184) was obtained from OBDMC/PBTC (Operations, Biostatistics and Data Management Core/ Pediatric Brain Tumor Consortium), and was previously published in aggregate by Kilburn LB, Kocak M, Baxter P, et al. Pediatr Blood Cancer. 2018;65:e26832.