Basic Biostatistics for Clinical Research

Ramses F Sadek, PhD
GRU Cancer Center
Part One

1. Basic Concepts
2. Data & Their Presentation
1. Basic Concepts

- Statistics
- Biostatistics
- Populations and samples
- Statistics and parameters
- Statistical inferences
- variables
- Random Variables
- Simple random sample
Statistics is a field of study concerned with
1- collection, organization, summarization and analysis of data.
2- drawing of inferences about a population when only a part of the data is observed.

Statisticians try to interpret and communicate the results to others.
Biostatistics

• **Biostatistics** can be defined as the application of the mathematical tools used in statistics to the fields of biological sciences and medicine.

• Biostatistics is a growing field with applications in many areas of biology including epidemiology, medical sciences, health sciences, educational research and environmental sciences.
Variables

• A **variable** is an object, characteristic or property that can have different values in different places, persons, or things.

• A **quantitative variable** can be measured in some way.
 • Examples: Heart rate, heights, weight, age, size of tumor, volume of a dose.

• A **qualitative (categorical) variable** is characterized by its inability to be measured but it can be sorted into categories.
 • Examples: gender, race, drug name, disease status.
Populations and Samples

- A **population** is the collection or set of all of the values that a variable may have.
- A **sample** is a part of a population.
- We use the data from the sample to make inference about the population.
- The sample mean is not true mean but might be very close.
- Closeness depends on sample size.
Sampling Approaches-1

• **Convenience Sampling**: select the most accessible and available subjects in target population. Inexpensive, less time consuming, but sample is nearly always non-representative of target population.

• **Random Sampling (Simple)**: select subjects at random from the target population. Need to identify all in target population first. Provides representative sample frequently.
Sampling Approaches-2

- **Systematic Sampling**: Identify all in target population, and select every x^{th} person as a subject.
- **Stratified Sampling**: Identify important sub-groups in your target population. Sample from these groups randomly or by convenience. Ensures that important sub-groups are included in sample. May not be representative.
- **More complex sampling**
Sampling Error

• The discrepancy between the true population parameter and the sample statistic

• Sampling error likely exists in most studies, but can be reduced by using larger sample sizes

• Sampling error approximates $\frac{1}{\sqrt{n}}$

• Note that larger sample sizes also require time and expense to obtain, and that large sample sizes do not eliminate sampling error
Parameters vs. Statistics

- A **parameter** is a population characteristic
- A **statistic** is a sample characteristic
 - Example: we estimate the sample mean to tell us about the true population mean
 - the sample mean is a ‘statistic’
 - the population mean is a ‘parameter’
Descriptive & Inferential Statistics

Descriptive Statistics deal with the enumeration, organization and graphical representation of data from a sample.

Inferential Statistics deal with reaching conclusions from incomplete information, that is, generalizing from the specific sample. Inferential statistics use available information in a sample to draw inferences about the population from which the sample was selected.
Random Variables

• A random variable is one that cannot be predicted in advance because it arises by chance. Observations or measurements are used to obtain the value of a random variable.

• A discrete random variable has gaps or interruptions in the values that it can have.
 • The values may be whole numbers or have spaces between them.

• A continuous random variable does not have gaps in the values it can assume.
 • Its properties are like the real numbers.
2- Data and Their Presentation

- Data
- Data sources
 - Records
 - Surveys
 - Experiments
- Types of data
- Categorical variables
- Frequency tables
- Numerical variables
- Categorization
- Bar charts
- Histograms
- Box plots
- Bar charts by another variable
- Histogram by another variable
- Box plots by another variable
- Scatter plots
Data

• The raw material of Statistics is data.
• We may define data as figures. Figures result from the process of counting or from taking a measurement.
• Example:
 • - When a hospital administrator counts the number of patients (counting).
 • - When a nurse weighs a patient (measurement)
Sources of Data

Data are obtained from

- Records
- Surveys
- Experiments
Data Sources: Records, Reports and Other Sources

Look for data to serve as the raw material for our investigation.

1- Routinely kept records.
 - Hospital medical records contain immense amounts of information on patients.
 - Hospital accounting records contain a wealth of data on the facility’s business activities.

2- External sources.

 The data needed to answer a question may already exist in the form of published reports, commercially available data banks, or the research literature, i.e. someone else has already asked the same question.
Data Sources: Surveys

Survey may be necessary if the data needed is about answering certain questions.

Example:

If the administrator of a clinic wishes to obtain information regarding the mode of transportation used by patients to visit the clinic, then a survey may be conducted among patients to obtain this information.
Data Sources: Experiments

Frequently the data needed to answer a question are available only as the result of an experiment.

For example:

If a nurse wishes to know which of several strategies is best for maximizing patient compliance, she might conduct an experiment in which the different strategies of motivating compliance are tried with different patients.

Clinical trials is the most obvious example.
Types of Data

- Data are made up of a set of variables:
 - Categorical variable
 - Numerical variables
Categorical Variables

• Any variable that is not numerical (values have no numerical meaning) (e.g. gender, race, drug, disease status)
 • **Nominal variables**
 • The data are unordered (e.g. RACE: 1=Caucasian, 2=Asian American, 3=African American, 4=others)
 • A subset of these variables are **Binary or dichotomous variables**: have only two categories (e.g. GENDER: 1=male, 2=female)
 • **Ordinal variables**
 • The data are ordered (e.g. AGE: 1=10-19 years, 2=20-29 years, 3=30-39 years; likelihood of participating in a vaccine trial). Income: Low, medium, high.
Frequency Tables

- Categorical variables are summarized by
 - Frequency counts – how many are in each category
 - Relative frequency or percent (a number from 0 to 100)
 - Or proportion (a number from 0 to 1)

<table>
<thead>
<tr>
<th>Gender of new HIV clinic patients, 2006-2007, Mbarara, Uganda.</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>415 (39)</td>
</tr>
<tr>
<td>Female</td>
<td>645 (61)</td>
</tr>
<tr>
<td>Total</td>
<td>1060 (100)</td>
</tr>
</tbody>
</table>
Numerical Variables (Quantitative)

- Naturally measured as numbers for which meaningful arithmetic operations make sense (e.g. height, weight, age, salary, viral load, CD4 cell counts)
 - **Discrete variables**: can be counted (e.g. number of children in household: 0, 1, 2, 3, etc.)
 - **Continuous variables**: can take any value within a given range (e.g. weight: 2974.5 g, 3012.6 g)
Manipulation of Variables

• Continuous variables can be discretized
 • E.g., age can be rounded to whole numbers
• Continuous or discrete variables can be categorized
 • E.g., age categories
• Categorical variables can be re-categorized
 • E.g., lumping from 5 categories down to 2
Categorization

- Continuous variables can be categorized in meaningful ways.
- Choice of cut-off points:
 - Even intervals (5 year age intervals)
 - Meaningful cut-points related to a health outcome or decision
 - Meaningful CD4 count (below 200, 200-350, 350-500, 500+)
 - Equal percentage of the data falling into each category (quartiles, centiles,..)
Organizing Data and Presentation

Some of common methods:

- Frequency Table
- Frequency Histogram
- Relative Frequency Histogram
- Frequency polygon
- Relative Frequency polygon
- Bar chart
- Pie chart
- Box plot
- Scatter plots.
CD4 cell counts (mm3) of newly diagnosed HIV positives at Mulago Hospital, Kampala (N=268)

<table>
<thead>
<tr>
<th>CD4 cell count range</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>40 (14.9)</td>
</tr>
<tr>
<td>50-200</td>
<td>72 (26.9)</td>
</tr>
<tr>
<td>201-350</td>
<td>58 (21.6)</td>
</tr>
<tr>
<td>>350</td>
<td>98 (36.6)</td>
</tr>
</tbody>
</table>
Bar Charts

- General graph for categorical variables
- Graphical equivalent of a frequency table
- The x-axis does not have to be numerical

Alcohol consumption in Mulago Hospital patients enrolling in VCT study, n=929

![Bar Chart](image)
Histograms

- Bar chart for numerical data – The number of bins and the bin width will make a difference in the appearance of this plot and may affect interpretation
• This histogram has less detail but gives us the % of persons with CD4 <350 cells/mm3

CD4 among new HIV positives at Mulago
• What Does This Graph Tell Us?

Days drank alcohol among current drinkers

- Relative freq
- Days

Days

0 0.05 0.1 0.15 0.2 0.25

Days drank alcohol among current drinkers
Box Plots

- Middle line = median (50th percentile)
- Middle box = 25th to 75th percentiles (interquartile range)
- Bottom whisker: Data point at or above 25th percentile – 1.5*IQR
- Top whisker: Data point at or below 75th percentile + 1.5*IQR
Box Plots

CD4 count among new HIV positives at Mulago
Box Plots By Another Variable

- We can divide up our graphs by another variable
- What type of variable is gender?
Histograms By Another Variable

Days consumed alcohol of prior 30

Relative freq

male

female

0.1

0

0

10

20

30

0

10

20

30

3

2

1

0

0

10

20

30

0

10

20

30

35
Frequency Polygon

- Use to identify the distribution of your data
Scatter Plots

CD4 cell count versus age

a4. how old are you?
Part Two

Numerical Variable Summaries and Measures
Measures of Central Tendency and Dispersion

- Where is the center of the data?
 - Median
 - Mean
 - Mode
- How variable the data are?
 - Range, Interquartile range
 - Variance, Standard Deviation, Standard Error
 - Coefficient of variation
Measures of Central Tendency: Median

- Median – the 50th percentile = the middle value
 - If \(n \) is odd: the median is the \((n+1)/2\) observations (e.g. if \(n=31 \) then median is the 16th highest observation)
 - If \(n \) is even: the median is the average of the two middle observations (e.g. if \(n=30 \) then the median is the average of the 15th and 16th observation)
- Example; Median Progression Free Survival in a cancer Clinical trial sample = 195 days.
Measures of Central Tendency: Mode

- **Mode** – the value (or range of values) that occurs most frequently
- Sometimes there is more than one mode, e.g. a bi-modal distribution (both modes do not have to be the same height)
- The mode only makes sense when the values are discrete, rounded off, or binned.

![Histogram of Grades](image)

![Graph of Height](image)
Measures of Central Tendency: Mean

\[
\text{Mean}: \quad x = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

• Mean – arithmetic average
 • Means are sensitive to very large or small values (outliers), while the median is not.
 • Mean CD4 cell count: 296.9
 • Mean age: 32.5
 • When data is highly skewed, the median is preferred. Both measures are close when data are not skewed.
Interpreting the Formula

• \(\sum \) is the symbol for the sum of the elements immediately to the right of the symbol

• These elements are indexed (i.e. subscripted) with the letter \(i \)
 - The index letter could be any letter, though \(i \) is commonly used

 \[\text{Mean: } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

• The elements are lined up in a list, and the first one in the list is denoted as \(x_1 \), the second one is \(x_2 \), the third one is \(x_3 \) and the last one is \(x_n \).

• \(n \) is the number of elements in the list.

\[\sum_{i=1}^{n} x_i = x_1 + x_2 + \ldots + x_n \]
Measures of Variation: Range, IQR

1. Range
 - Minimum to maximum or difference (e.g. age range 15-58 or range=43)
 - CD4 cell count range: (0-1368)
2. Interquartile range (IQR)
 - 25th and 75th percentiles (e.g. IQR for age: 23-36) or difference (e.g. 13)
 - Less sensitive to extreme values
 - CD4 cell count IQR: (92-422)
Measures of Variation: Variance SD, SE

- Sample variance
 - Amount of spread around the mean, calculated in a sample by
 \[s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \]

- Sample standard deviation (SD) or just s
 - is the square root of the variance
 \[s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \]
 - The standard deviation has the same units as the mean

- Standard error (SE) = \(S / \sqrt{N} \)

- s of CD4 cell count = 255.4
- s of Age = 11.2
Mean and Standard deviation

Mean = 7
SD = 0

Mean = 7
SD = 0.63

Mean = 7
SD = 4.04
Measures of Variation: CV

- Coefficient of variation
 - For the same relative spread around a mean, the variance will be larger for a larger mean
 \[
 CV = \frac{s}{\bar{x}} \times 100\%
 \]
 - Can use to compare variability across measurements that are on a different scale (e.g. IQ and head circumference)

- CV for CD4 cell count: 86.0%
- CV for age: 34.5%
Empirical Rule

For a Normal distribution approximately,

a) 68% of the measurements fall within one standard deviation around the mean

b) 95% of the measurements fall within two standard deviations around the mean

c) 99.7% of the measurements fall within three standard deviations around the mean
Suppose the reaction time of a particular drug has a Normal distribution with a mean of 10 minutes and a standard deviation of 2 minutes

Approximately,

a) 68% of the subjects taking the drug will have reaction time between 8 and 12 minutes

b) 95% of the subjects taking the drug will have reaction time between 6 and 14 minutes

c) 99.7% of the subjects taking the drug will have reaction time between 4 and 16 minutes
Part Three
Biostatistics in Clinical Research

• Role of statistics
• Statistician role
 • In research
 • In development
• Study design
 • Controlled designs
 • Observational studies
 • Cohort
 • Case-control
Role of Statistics

• In general, statistics is a collection of techniques for extracting information from data, and for ensuring that the data collected contains the desired information.

• Statistics provides an objective basis for making decisions in the presence of uncertainty.
Statistician’s Role

- Study design
- Sample size and power calculation
- Protocol development
- Data analysis
- Analysis interpretations
- Reporting
- Publications
Statistician’s Role: In Research

- Collaboration
- Design clinical development program
- Design and analyze clinical trials
- Manage the report production process
- Interpret results
- Communicate results
Statistician’s Role: In Drug Development

- Develop final statistical statements on the efficacy and safety for marketing purposes
- Develop publications, package inserts, etc.
- New indications, line extensions, etc.
Study Design

• How do we set up the study to answer the scientific question(s)?

• Two Main categories:
 • Controlled designs:
 • The experimenter has control “exposure”, treatments”,
 • Randomized Clinical trials.
 • Observational Studies:
 • Cohort studies
 • Case-Control studies
Controlled Designs

• Not necessarily randomized
e.g. In Cancer research
 • Phase I: dose finding
 • Phase II: 1 or 2-arm preliminary efficacy
 • Phase III: Randomized, efficacy

Choice of gold standard, balancing of treatment arms to controlling bias.
Observational Studies: Cohort

• **Process:**
 - Identify a cohort
 - Measure exposure
 - Follow for a long time
 - See who gets disease
 - Analyze to see if disease is associated with exposure

• **Pros**
 - Measurement is not biased and usually measured precisely
 - Can estimate prevalence and associations, and relative risks

• **Cons**
 - Very expensive
 - Extremely expensive if outcome of interest is rare
 - Sometimes we don’t know all of the exposures to measure
Observational Studies: Case-Control

- **Process:**
 - Identify a set of patients with disease, and corresponding set of controls without disease
 - Find out retrospectively about exposure
 - Analyze data to see if associations exist

- **Pros**
 - Relatively inexpensive
 - Takes a short time
 - Works well even for rare disease

- **Cons**
 - Measurement is often biased and imprecise (‘recall bias’)
 - Cannot estimate prevalence due to sampling
Factors Affecting Observation Studies

- **Confounders**
 - a confounding variable (factor) is an extraneous variable in a statistical model that correlates (directly or inversely) with both the dependent variable and the independent variable

- **Biases**
 - Self-selection Bias
 - self-selection bias arises when individuals select themselves into a group, causing a biased sample with nonprobability sampling. It is commonly used to describe situations where the characteristics of the people which cause them to select themselves in the group create abnormal or undesirable conditions in the group.
 - Recall bias (next slide)
 - Survival bias
 - Etc.
Recall Bias In Observational Studies

- Recall bias is a systematic error caused by differences in the accuracy or completeness of the recollections retrieved ("recalled") by study participants regarding events or experiences from the past.
- Sometimes also referred to as response bias, responder bias or reporting bias.
- This type of measurement bias can be a methodological issue in research that involves interviews or questionnaires (potentially leading to differential misclassification of various types of exposure).
- Recall bias can be a particular concern in retrospective studies that use a case-control design to investigate the etiological causes of a disease or psychiatric condition. For example, in studies of risk factors for breast cancer, women who have had the disease may search their memories more thoroughly than unaffected controls to try to recall exposure to factors that have been mentioned in the press, such as use of oral contraceptives.60
Survival Bias In Observational Studies

- One analytic bias has persistently appeared in many reported analyses of observational studies of therapy for HIV infection.
- Longer survival may increase a patient's chance to use treatment in an observational study.
- Patients who die sooner have less time to select treatment and thus, by default, are more likely to remain untreated.
- If this is not considered in the data analysis, the estimate of the treatment effect will be biased.
Part Four
Statistical Inference

• Statistical Estimation
 • Point estimation
 • Confidence Intervals
• Testing of Hypotheses
1. Point estimation
 • Estimating a population parameter by one value: Sample mean, sample SD, Sample Median
 • It is a sample dependent

2. Confidence Interval
 • CI for a parameter is a random interval constructed from data in such a way that the probability that the interval contains the true value of the parameter can be specified before the data are collected.

3. Estimator.
 • An estimator is a rule for "guessing" the value of a population parameter based on a random sample from the population.
 • An estimator is a random variable, because its value depends on which particular sample is obtained, which is random. A canonical example of an estimator is the sample mean, which is an estimator of the population mean.
Confidence level

• The confidence level of a confidence interval is the chance that the interval that will result once data are collected will contain the corresponding parameter.

• If one computes confidence intervals again and again from independent data, the long-term limit of the fraction of intervals that contain the parameter is the confidence level.
 • 95% Confidence interval (95% CI),…
Hypothesis testing

• Forming of Hypothesis
 • Null Hypothesis (H_0)
 • Alternative Hypothesis (H_1) or (H_a)
 • A null hypothesis (typically that there is no effect) is compared with an alternative hypothesis (typically that there is an effect, or that there is an effect of a particular sign).
 • For example, in evaluating whether a new cancer treatment works, the null hypothesis typically would be that the remedy does not work, while the alternative hypothesis would be that the remedy does work.
Hypothesis testing

- When the data are sufficiently improbable under the assumption that the null hypothesis is true, the null hypothesis is rejected in favor of the alternative hypothesis.
- This does not imply that the data are probable under the assumption that the alternative hypothesis is true, nor that the null hypothesis is false, nor that the alternative hypothesis is true.
- Statistical hypothesis testing is making a decision between rejecting or not rejecting a null hypothesis, on the basis of a set of observations.
Possible decisions and errors

<table>
<thead>
<tr>
<th></th>
<th>Accept Ho</th>
<th>Reject Ho</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0 is True</td>
<td>![Smiley face]</td>
<td>α</td>
</tr>
<tr>
<td>H0 is false</td>
<td>β</td>
<td>![Smiley face]</td>
</tr>
</tbody>
</table>
Important Statistical terminology

- **Alpha (α)**: Probability of Type-I error
- **Beta (β)**: Probability of Type-II error = 1 - power
- **Power**: The power of a test against a specific alternative hypothesis is the chance that the test correctly rejects the null hypothesis when the alternative hypothesis is true.
- **P (P-value)**: The P value of the null hypothesis given the data is the smallest significance level p for which any of the tests would have rejected the null hypothesis.
- **d**: Confidence interval half width
- **Delta (Δ)**: difference
QUESTIONS

Contact Me:

Ramses Sadek
rsadek@gru.edu